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1.0 INTRODUCTION 
 
Mathematical models of physical and biological systems with parameters distributed 
probabilistically requires the estimation of a probability measure over the set of admissible 
parameters.  For use in applications, algorithms that can rapidly estimate model parameters in 
real-time are needed. 
 
We quantify the uncertainty in estimated model parameters using both a Bayesian and a 
Frequentist approach.  We then apply these methods to a class of quasi-chemical models (QCM) 
developed by the U.S. Army Natick Soldier Research Development and Engineering Center 
(NSRDEC) (References [a] and [b]).  The QCM  models, developed to model bacteria growth on 
food under various environmental conditions, are capable of capturing the effects of microbial 
lag, inactivation and tailing. 
 
Bayesian and Frequentist approaches for solving the inverse problem are presented in this report. 
Solutions using the two approaches for the datasets from Reference [b] are compared.  
Uncertainty Quantification (UQ) methods for Forward Uncertainty Propagation are also applied 
using the datasets. 
 
Organization of Report.  The report is organized as follows.  The inverse problem and its 
mathematical solution using both a Bayesian and a Frequentist approach are presented in Section 
2.  A 4-parameter Quasi-Chemical Model (QCM-4) for bacteria growth developed by the U.S. 
Army is described in Section 3.  The QCM-4 model is used as an example application for 
applying the UQ methods.  The results of applying the UQ methods to the QCM-4 model are 
presented in Section 4.  Conclusions are provided in Section 5.  Areas for further investigation 
are discussed in detail in Section 6. 
 
The QCM-4 experiment datasets are provided in Appendix A.  Code for solving the inverse 
problem is given in Appendix B.  Variability in plate counting of bacteria colonies is discussed 
in Appendix C. 
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2.0 UNCERTAINTY QUANTIFICATION AND THE INVERSE 
PROBLEM 

 
In this section we describe how UQ methods are used to solve and evaluate a type of problem 
that consists of a model of a dynamic process and measurements related to the process, in which 
there is inherent uncertainty in both the model and the measurements.   
 
Assume there is some process in which a state  T

1 ,,
xNxx x  of Nx variables changes over 

time, the initial value of the state (x(0)) is known, and there is a mathematical model of N 
parameters  that relates the change in the state over time to functions f of the state variables.  
Mathematically this can be represented as 
 

  κκxf
x

;;
d

d
t

t
 . (2-1)

 
If a set of measurements exist that are related to the dynamic process, then the inverse problem is 
to estimate the model parameters, κ̂ , that best fit the measurements.  UQ methods can be applied 
for formulating and solving the inverse problem, conducting sensitivity analysis to understand 
the sensitivity of the model to variability in parameter estimates, developing parameter reduction 
techniques for reducing uncertainty, and propagating uncertainty forward through the model.   
 
Sections 2.1 and 2.2 discuss frequentist and Bayesian approaches for solving the inverse 
problem, respectively. 
 
 
2.1 FREQUENTIST APPROACH 
 
2.1.1 The Inverse Problem 
 
Let g(t;) be the observation process, which is a function of the state x of the modeled process at 
time t (Reference [c]).  To fit the model to a set of n measurements, assume a statistical model of 
the form 
 

  njtY jjj ,...,1,; 0  κg , (2-2)
 

where Yj is a measurement of the dynamic process at time tj with error j, and 0 are the true 
parameters of the model at time tj (i.e. E[Yj] = g(tj;0)).  The estimated parameters, , can be 
found using ordinary least squares given by 
 

  
2

1

;minarg 



n

j
jj tY κκ

κ
g , (2-3)
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where  is the sample space for the model parameters.  If yj is a realization of Yj, and j a 

realization of j for j = 1,...,n measurements, then 
 

  njty jjj ,...,1,; 0  κg , (2-4)
 
and the estimated model parameters for the realized measurements, κ̂ , that solve the inverse 
problem are 
 

  
2

1

;minargˆ 



n

j
jj ty κκ

κ
g . (2-5)

 
The quantity being minimized in Equation (2-5), the objective or cost function for the 
minimization problem, is referred to as the sum of squared residuals (SSR). 
 
 
2.1.2 Sensitivity Analysis 
 
Sensitivity analysis examines the sensitivity of the process state relative to the model parameters.  
Traditional sensitivity functions (TSFs) can be used to evaluate the local sensitivity of an inverse 
problem solution as well as estimate the covariance of the estimated model parameters.  The 
covariance can then be used to forward propagate the uncertainty in a solution through the 
model. 
 
The local sensitivity of an inverse problem relates the change in the function g to changes in the 
model parameters .  For dynamic system defined by a system of differential equations, the 
matrix sensitivity equations are given by (Reference [c]) 
 

κ

f

κ

x

x

f

κ

x





















td

d
. (2-6)

 
For longitudinal measurements of the form g(t;) = C x(t;) where C is an observation operator, 
Equation (2-6) can be used to obtain 
 

   
jj

tt







 κxκ ;; Cg
. (2-7)

 
The traditional sensitivity functions, s, are given by 
 

 
j

t
j 

 d

dx
s . (2-8)

 
The Nx  N matrix s is found by solving the matrix system 
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   









 NNx
t

t
0s

κ

f
s

x

fs
0,

d

d
. (2-9)

 
The sensitivity matrix F() for n measurements is then defined by 
 

   















j

i
ij

t κ
κF

;g
. (2-10)

 
Propagating the uncertainty of a solution through the model uses the fact that the least squares 
estimator  has the asymptotic properties (References [c] through [e]),  
 

 00,~ κκ N , (2-11)
 
where 0 are the true model parameters, and 0 is the true covariance of .  If 2

0  is the true 

variance in the measurements, then the covariance can be approximated by 
 

     1

00
T2

00


 κFκF . (2-12)

 
The values for 0 and 2

0  are unknown, but can be estimated by κ̂ from Equation (2-5) and 

 

  
2

1

2
0 ˆ;

1
ˆ 





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n

j
jj ty

Nn
κg , (2-13)

 
respectively.  The covariance can then be estimated using 
 

     1

00
T2

00 ˆˆˆˆ 
 κFκF . (2-14)

 
The uncertainty in a solution across all model parameters can be forward propagated assuming 
the multivariate normal distribution given in Equation (2-11).  For individual model parameter 

sensitivity, it is often convenient to construct confidence intervals.  Let jjjSE  ˆ  be the 

standard error of the jth model parameter.  Let t1-/2 be the critical value for a Student’s t-
distribution where 
 

  2P 2/1  tS , (2-15)

 
for a random variate S with n-N degrees of freedom.  The 100  (1-)% confidence interval for 
model parameter j is then given by 
 

 jjjj SEtSEt 2121 ˆ,ˆ   . (2-16)
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2.1.3 Model Reduction via Parameter Ranking and Model Comparison Testing 
 
Models of complex, dynamic processes do not always have analytic solutions.  Estimating the 
model parameters that best fit a given set of measured data is accomplished using a numerical 
solver.  Solutions may be insensitive to one or more of the solution parameters due to inherent 
conditions of the process over the model parameter space, or numerical issues related to the 
tolerance values of the solver and the error in the measured data used to estimate the model 
parameters.  In either case, some components of the model may need to be replaced, modified, or 
removed (Reference [f]) in order to reduce sensitivity. 
 
One method for handling situations in which a model solution is insensitive to one or more 
model parameters is to determine which parameters are significant, set the insignificant 
parameters to nominal values, and solve Equation (2-5) using a reduced set of model parameters.  
The first step is to perform a parameter ranking based on the orthogonalization of the sensitivity 
matrix F().  This can be achieved using a thin, or economy-size, QR decomposition of the 
matrix F so that FP = QR, where P is a permutation matrix.  The order of the permutations gives 
the ranking of the parameters where the rankings are chosen according to the 2-norm of the 
sensitivity with respect to the parameter. 
 
The reduction process begins by first estimating only the most significant parameter from the 
sensitivity-based parameter ranking scheme while the remaining parameters are set to nominal 
values.  The choice of nominal values for testing the significance of the model parameters is 
arbitrary.  If a solution is truly insensitive to a model parameter, then any value for an 
insignificant parameter should not alter the choice of a significant parameter. 
 
The second step is to estimate the two most significant parameters and use a statistically-based 
model comparison (i.e. hypothesis) test to determine if the data can be adequately described by 
the single parameter model as compared to the two parameter model.  If it is determined that the 
second parameter significantly improves the model fit to the data, then the process of adding an 
additional significant parameter to the model will continue until there is no significant change to 
the model fit. 
 
Since nested models are being compared, the null hypothesis being tested is that the constrained 
model provides an adequate fit to the data.  Let J (;y) and J (H;y) denote the value of the 
objective function in Equation (2-5), where κκ H  and   1dim  Hκκ  (i.e. H contains one 

less model parameter than ).  Let T be the difference in the objective functions given by 
 

      0;;  yκyκy JJT H , (2-17)
 

and define the test statistic for the hypothesis test, U (y), as 
 

   
 yκ

y
y

;J

Tn
U . (2-18)
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The value of U (y) converges to U in distribution (Reference [c]), where U ~2(1), and 2(1) is a 
chi-square distribution with one degree of freedom.  If the statistic   yU , then the null 

hypothesis is rejected at a 100  (1-)% confidence level where 
 

    1P . (2-19)
 
 
2.2 BAYESIAN APPROACH 
 
2.2.1 Variational Bayesian Inference 
 
Assume that the observations (i.e. measurements) yj are realizations given by Equation (2-4) 
where i are realizations of random measurement noise at time ti.  Let y = [y1,...,yn]

T be the set of 
all observations and  = [1,...,n]

T the set of additive noises.  The statistical model of the 
observations can then be written as 
 

  εκy G , (2-20)
 
where G () = [g(t1;),..., g(tn;)]T.  The additive noise i for each observation is assumed to be 
independent and identically distributed Gaussian random variables that are independent of the 
parameters .  That is,  ~ N (0,In), and p(,) = p()p() where p() is a probability.  Since  is 
non-negative, and for the specific example that will be discussed in Section 3  is non-negative, 
it is convenient to parameterize the problem over the real numbers as 
 

 
  .ln

and,ln

2
1 

 κξ
 

(2-21)

(2-22)
 
The Bayesian paradigm consists of considering that  follows a prior distribution p() which, 
after collecting the observations y, is updated using Bayes’ rule to 
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To allow for inference on the Gaussian measurement noise, Equation (2-23) can be modified as 
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pp,|p
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ξξξy

ξξy

y

ξξy
yξ , (2-24)

 
and denote with 1 NRθ  the augmented set of parameters  = [,. 
 
Typically, the posterior distribution p(|y) is explored via Markov Chain Monte Carlo (MCMC) 
techniques (Reference [g]) which enable sampling from a Markov Chain that has p(|y) as its 
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invariant distribution and, therefore, the generated samples can be thought of as (asymptotically) 
drawn from that distribution. 
 
In order for that assumption to be accurate, it is often required to draw thousands of samples until 
the generated chain approaches its invariant density.  The speed of convergence of the chain 
depends on the nature of the true posterior and on the generating procedure. For instance, 
variations of the Metropolis-Hastings algorithm (References [h] through [k]) exist in the 
literature which provide different acceptance rates and eventually faster or slower convergence. 
However, in all but the simplest cases, several thousands samples are required, which means that 
the forward model must run equally many times, resulting in large or possibly unaffordable 
computational costs.  In order to avoid excessive simulations and reduce the computational cost 
of exploring the posterior distribution, a variational approach of the problem is considered 
(References [l] and [m]) that is based on approximating p(|y) by a known probability 
distribution chosen from a known family. 
 

Let Q be a family of probability densities parameterized by      NRλλθ ,|qQ .  The goal 

is to find the element of Q that is as close as possible, in some sense, to the true posterior p(|y).  
The distance between two probability distributions can be quantified using the Kullback-Leibler 
(KL) divergence given by (Reference [n]) 
 

      
    θλθ

yθ

λθ
yθθ d|q

|p

|q
ln|p||qKL

1














NR

. (2-25)

 
The KL divergence does not define a metric since it does not satisfy the triangle inequality. 
However, it is often used as such since it is always non-negative and KL[q||p] = 0  q = p a.s.  
In addition, KL[q||p]  0 implies that q  p in total variation, a result that guarantees proximity 
between two probability measures.  Intuitively, the KL divergence can be thought of as the 
information loss of approximating the true posterior p(|y) by q(|).  It is clear from the above 
that minimizing the KL divergence can provide a way to find approximations of the true 
posterior; we, therefore, state the optimization problem as finding * such that 
 

      yθλθλθ
λ

|p|||qKLminarg|q *




NR
. (2-26)

 
Trivially, if the true posterior p(|y) is in Q, one should expect the result of the optimization to 
be 0; otherwise, it will be a strictly positive value.  In practice, it is not possible to evaluate the 
above expression since p(|y) is not known.  In the next section, we formulate an equivalent 
optimization problem that is possible to solve by deriving a lower bound of the evidence p(y). 
 
 
2.2.2 Evidence Lower Bound (ELBO) 
 
Substituting Baye’s rule (Equation (2-24)) into the KL divergence (Equation(2-25)) gives the 
relation 
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        yθθy |p||qKLqpln F , (2-27)
 
where 
 

   
   

      
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F
 

(2-28)

(2-29)
 
with 
 

       θλθλθ d|qln|qqH  (2-30)

 
being the entropy of q(|).  Observing that the left hand side of Equation (2-27) is independent 
of q(|), minimizing KL[q||p] is equivalent to maximizing the quantity F [q] which, due to the 
positivity of KL[q||p], always satisfies 
 

   ypq F . (2-31)
 
F [q] is referred to as the evidence lower bound (ELBO).  Maximization of F [q] is a feasible 
task since it does not depend on the posterior or the evidence distributions, but only on the joint 
distribution p(y,) = p(y|) p() which, in general, is known.  
 
 
2.2.3 Approximating Schemes 
 
In order to evaluate the integral in Equation (2-29) a numerical method must be used.  Numerical 
integration or Monte Carlo will be able to provide accurate results which, when used within an 
optimization algorithm can be as expensive as performing MCMC. Instead approximating 
schemes for Equation (2-29) are developed that are valid when the approximating family of 
distributions Q is the family of Gaussian mixtures, that is, 
 

     








 


L

i
iiL L 1

,|
1

|q|q | Σμθλθλθ NQ . (2-32)

 

The optimization problem needs to be solved with respect to the parameters  =    L

ii
L

ii 11  Σμ   

where L, the number of Gaussian components, will be assumed to be fixed and i must be 
restricted to be positive definite.  For the purpose of inferring the parameters in the example 
discussed in Section 3, i will also be assumed to be diagonal which will further simplify the 
calculations.  The latter implies that the parameters will be a posteriori independent, which is not 
always the case, but this constraint is added here for the sake of simplicity. 
 
  



 2-8 Applied Mathematics, Inc. 

First, a lower bound for H is derived using Jensen’s inequality (Reference [o]) to obtain 
 

   qq 0HH  , (2-33)
 
where 
 

  



L

i
iq

L 1
0 ln

1
qH , (2-34)

 
with 
 

 



L

j
jijii L

q
1

,|q
1

ΣΣμμ . (2-35)

 
By replacing H [q] with H0[q] in Equation (2-29), a lower bound for the ELBO is derived.  
Next, define L[q] to be the second term in Equation (2-29),  
 

       θλθθy d|q|plnqL , (2-36)

 
which, by substituting for q(|) using Equation (2-32), gives 
 

       θΣμθθy d,||pln
1

q iiL
NL , (2-37)

 
and each integral term can be approximated by taking a 2nd order Taylor expansion of ln[p(y,)] 
about  = i.  This gives 
 

             iiiiii μθμyμθμθμyμyθy   ,pln
2

1
,pln,pln,pln 2T , (2-38)

 
where θ  is the Jacobian and 2

θ  is the Hessian with respect to .  Upon substituting Equation 

(2-38) into Equation (2-36), take the approximation for L[q] as 
 

      



L

i
iiL 1

2
02 ,plnTr

2

1
qq μyΣLL , (2-39)

 
where Tr is the matrix trace function, and L0[q] is the term resulting from the zeroth order 
approximation in Equation (2-38) given by 
 

   



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i
iL 1

0 ,pln
1

q μyL . (2-40)
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Combining Equations (2-34) and (2-39) yields an approximation of the ELBO, F2[q], given by 
 

     qqq 202 LHF  , (2-41)
 
that can be used in an optimization algorithm to compute a local maximum of Equation (2-29). 
 
 
2.2.4 Stochastic Differential Equation 
 
In Section 2.1, the inverse problem was formulated assuming that the model parameters are 
random relative to experimental measurements, but constant over time.  The inverse problem can 
be extended to allow for time-varying model parameters that represent a random process.  To 
formulate this let     T

1 ,,~ tktk N 
 κ  and introduce Gaussian white noise on the random 

parameters by writing 
 

  ,,,1,
d

d
0 


 Ni

t

W
ktk

i
t

i
i

i   (2-42)

 
where ik0  is a random initial value for ki(t); 

i
tW  are independent Brownian motions with iW0  = 0; 

and i are the white noise amplitudes.  The main properties of i
tW  include that any increments 

i
tWd  and i

sWd  for t  s are independent and that  tWt d,0~d N .  The system of differential 

equations for the inverse problem in Equation (2-1) can then be replaced with the Itô stochastic 
differential equation (SDE) given by 
 

    tttt t WψXσκXfX d,~d~,
~

d 0  , (2-43)

 

where  T1 ,, xN
ttt XX X , i

i
t xX  ,  T

0
1
00 ,,~  Nkk κ ,  T

1 ,,


 Nψ , and 

 T1 ,,  N
ttt WW W .  The values for the drift f

~
are similar to those for f in Equation (2-1), and 

the values for the diffusion σ~  are related to the derivatives of f.  In Section 3 we will show how 
f
~

 and σ~  are constructed. 
 
Calling Equation (2-43) an Itô-SDE refers to the fact that when the equation is written in integral 
form 
 

    
t

ss

t

st s
00 00 d,~d~,

~
WψXσκXfXX , (2-44)

 

the integral  
t

ss0
d,~ WψXσ  is understood to be an Itô integral (Reference [p]).  Equation (2-43) 

now satisfies the necessary growth and Lipschitz conditions that guarantee existence and 
uniqueness of the solution. Therefore, the smoothing problem of identifying the paths 
conditioned on partial observations is a well-defined problem.   
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2.2.5 Smoothing and Parameter Inference 
 
Data Assimilation Problem.  Since the uncertainty about Xt is due to the Brownian motion Wt 
and the uncertain parameters  and 0

~κ , the parameter inference problem discussed in Sections 

2.2.1 through 2.2.3 becomes a data assimilation problem that treats Equation (2-43) as a signal Xt 
and aims to extract information about Xt from observations  n

iti
y

1
Y  through updating the 

knowledge about Wt,  and 0
~κ .  The observations are obtained by 

 

  nihy itt ii
,,1,  X  (2-45)

 
where h(·) is an observation operator, i is additive measurement noise, and  n

iit 1  are the discrete 

time instances where observations are collected.  The additive measurement noise will be 

independent and identically distributed Gaussian, that is  2
i ,0~  N . 

 
The data assimilation problem is essentially a combination of the smoothing problem that 
consists of discovering the possible paths of the signal  T,0X  that were realized, given partial 

observations Y and the parameter inference problem for estimating { 0
~κ ,}, again given Y.  

Thus, in a Bayesian formulation of the problem, the main interest is in the joint conditional 
distribution of  T,0X , 0

~κ ,|Y, or equivalently that of  T,0W , 0
~κ ,|Y since the noise paths  T,0W  

suffice to completely determine  T,0X .  For convenience, the noise quantities ti
i
t W  will be 

considered thus merging  with Wt since the first is nothing but a noise amplitude and setting 

 T1 ,,  N
ttt Ξ .  Also, to work with a parameter space over the entire reals, let  0

~ln
~

κξ  .  

The data assimilation problem can be stated as that of estimating the posterior distribution 
 

        TTT ,00,0,0 ,
~

d,
~

|,
~

d ΞξΞξYΞξY  L , (2-46)

 

where   T,0,
~

| ΞξYL  is the likelihood function and        TT ,0~,00 d
~

d,
~

d ΞξΞξ Ξξ
  is the prior 

distribution as follows from Bayes’ rule.  In Equaion (2-46), Y is the posterior joint probability 
measure of  T,0,

~
Ξξ  conditioned on the data Y, while the joint prior 0 can be decomposed with 

respect to the measures of 
ξ
~  and Ξ  of ξ

~
 and  T,0Ξ  respectively.  Note that it is assumed a 

priori that ξ
~

 and  T,0Ξ  are independent.  The use of this measure-theoretic notation is preferred 

mostly due to the fact that  T,0Ξ  is infinite dimensional and, in general, its distribution does not 

have a density function.  If the data-misfit function is defined as 
 

          T
T

TT hh ,0,02,0 2

1
;,

~
XYXYYΞξ 


 , (2-47)

 
then the likelihood term takes the form 
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      YΞξΞξY ;,
~

,0
,0,

~
| TeT

L . (2-48)

 
 
A Metropolis-within-Gibbs Algorithm for Posterior Exploration.  In order to explore the 
smoothing distribution of Equation (2-46), MCMC methods and variations of the Metropolis-
Hastings (MH) algorithm (References [h] and [i]) are used.  A Metropolis-within-Gibbs 
algorithm will be used that was developed in Reference [g].  The general concept in a MH 

algorithm is to construct a Markov Chain   n

j

j
T

j

1,0,
~


Ξξ  that converges in distribution to a target 

distribution, here taken to be   T,0,
~
ΞξY .  This is done by an interative procedure that draws 

samples from a proposal distribution, say   j
T

j
,0

1,
~

|,
~

d ΞξΞξ  , conditional on the previous step, 

and accepts with acceptance probability 
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The main issue with this approach, for high dimensional distributions is that it is hard to choose 
an efficient proposal distribution that generates joint samples  T,0,

~
Ξξ . Note that  T,0Ξ  is an 

infinite dimensional process for which the standard MH algorithm can become arbitrarily slow. 
This is due to the fact that in infinite dimensions, the absolute continuity condition between the 
measures defined in the numerator and denominator of Equation (2-49) fails to be satisfied and is 
no longer a valid acceptance probability (Reference [q]).  In practice, the algorithm can still run 
after a finite discretization but becomes extremely slow under mesh refinement. One way to 
bypass this issue is by formulating the algorithm in function space (References [r] and [s]), 
which is the approach discussed here.  In addition, to further improve the performance of 
MCMC, a MH-within-Gibbs scheme is employed in order to provide a separate proposal for 
updating ξ

~
 which is assumed to be statistically independent of  T,0Ξ . 

 
A MH-within-Gibbs algorithm takes into account the Gibbs sampler principle, according to 

which, the chain   n

j

j

T

j

1,0
,

~


Ξξ  constructed by sampling   T
j

,0~ |
~

d~
~

Ξξξ Y

ξ
  and 

    ξΞΞ Y
Ξ

~
|d~ ,0,0 T

j
T   is Markovian and converges to the joint posterior distribution of 

  YΞξ |,
~

,0 T  .  This results in a block-updating procedure which consists of first updating jξ
~

 and 

then  
j

T,0
Ξ  by drawing from different proposals and accepting with different probabilities.  

Denote with   1
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1
~ ,

~
|

~
d  j

T

j Ξξξ
ξ

 and     1

,0,0
,

~
|d  j

T

j

T
ΞξΞΞ  the corresponding proposal 

distributions for generating jξ
~

 and  
j

T,0
Ξ  respectively at the jth step.  Then the MH-within-Gibbs 

pseudo-algorithm that asymptotically generates samples for the target posterior would consist of 
the steps displayed in Algorithm 1. 
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Algorithm 1: MH-within-Gibbs 
 
Initialize: Choose 0~

ξ ,  
0

,0 TΞ , and n. 

for j = 1 to n do 
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2. Accept with probability 
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3. Generate       1
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4. Accept with probability 
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end 
 
Typically the above procedure also includes a problem-specific burn-in period and thinning of 
the chain in order to ensure that our samples can be considered as i.i.d. samples drawn from the 
target posterior.  The first might be necessary due to the fact that our samples are generated until 
some further step m << n should be discarded since we assume that our chain that started from an 
arbitrary point   0

,0
0 ,

~
TΞξ  and might have not approached the distribution yet. The second is due 

to the Markovian nature of the chain and the fact that, as will be seen in choosing the proposal 
probabilities, the samples are typically autocorrelated, and discarding samples every few steps is 
one way to reduce the degree of autocorrelation. 
 

In order to implement Algorithm 1, the two proposal distributions   1

,0

1
~ ,

~
|

~
d  j

T
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 and 
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,
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j

T
ΞξΞΞ  need to be specified.  For ξ

~
, choose an independence sampler proposal and 

generate samples from its prior  ξ
ξ

~
d ~ , which at every step are independent of the previously 

accepted sample 1~ jξ .  For  T,0Ξ , use a preconditioned Crank-Nicolson (pCN) proposal, first 

introduced in Reference [r], that updates according to 
 

      ζΞΞ  1
,0

212
,0 1 n

TT  (2-52)

 

where      N
TT ,0

1
,0 ,,ζ  and i

t  is a Brownian motion with variance Var( i
td ) = Var( i

tWdi ) = 

ti d2  and   (0,1] is a tuning parameter.  More sophisticated pCN proposals that further speed 

up MCMC could be also be considered by replacing the scalar  by an operator (Reference [t]). 
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The acceptance probabilities corresponding to the proposal probabilities must also be derived.  
For 

ξ
~ , the acceptance probabilities are calculated as 
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For Ξ , the reversibility property with respect to the prior can be verified by 
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which gives 
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We note that Equation (2-56) is essentially the property that makes the pCN proposal dimension-
independent since the acceptance probability depends only on the data misfit function. 
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3.0 AN APPLICATION 
 
In this section, we apply the UQ methods developed in Section 2 to a bacteria growth model 
developed by the U.S. Army.   
 
Bacteria Growth in Food.  Typical bacterial growth in a closed environment goes through four 
stages (Reference [u]): lag phase, exponential growth phase, stationary phase, and a mortality 
(i.e. death) phase.  The ideal representation of growth kinetics is the bacterial growth curve 
which is a plot of the number of living cells as a function of time.   
 
In practice, the growth curve is a record of the number of countable cells obtained at a set of 
sampling times.  In a bacterial growth experiment, samples from an inoculated food product 
under a set of environmental conditions are collected over time.  The bacteria in the sample are 
recovered and enumerated.  A standard enumeration method is plate counting in which a petri 
dish with a growth medium is cultured with the recovered, possibly serially diluted, bacteria and 
incubated.  Viable bacteria cells in the growth medium will form colonies which can be counted 
as colony forming units (CFU).  Reported values are often presented as concentrations or base 10 
logarithms of concentrations of the enumeration counts in CFU relative to the volume of the 
sample (i.e. milliliters). 
 
Reference [u] lists more than 20 mathematical models used for modeling one or more of the 
stages of bacterial growth in food.  In this section, we apply UQ methods to a specific population 
dynamics model called the Quasi-Chemical Model (QCM) which was developed at the U.S. 
Army Natick Soldier Research Development and Engineering Center (NSRDEC) (References [a] 
and [b]).   
 
 
3.1 4-PARAMETER QUASI-CHEMICAL MODEL (QCM-4) 
 
Several versions of the QCM model were developed to model characteristics of bacterial growth 
kinetics observed during experiments.  The initial version, which is called the 4-parameter QCM 
(QCM-4) model in this report, was used to model the growth and death of Staphylococcus 
Aureus (S. aureus) in intermediate moisture bread.  Later, the QCM-4 model was used to model 
the growth kinetics of S. aureus; Listeria monocytogenes (Listeria); and Escherichia coli (E. coli) 
on hosts of bread, turkey meat, ham, commercial cheese products, or whey protein at different 
values of pH, temperature (T), water activity (Aw), and pressure (P) (Reference [b]). 
 
The QCM-4 model consists of four ordinary differential equations (ODEs) that describe the 
dynamics of a four element state.  Let M be the concentration of quiescent microbial cells (i.e. 
lag phase cells); M* the concentration of microbial cells activated for cell division and 
multiplication (growth phase cells); A the concentration of an antagonistic metabolite or 
extracellular death factor (i.e. quorum sensing molecule); and D the concentration of dead 
microbial cells.  The four ODEs that describe the state x(t;) = [M(t;), M*(t;), A(t;), D(t;)]T 
are derived from methods used in nonlinear chemical dynamics for analyzing complex chemical 
reactions (Reference [v]) and are given by 
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where  = [k1, k2, k3, k4]

T are non-negative rate parameters and h is a scaling constant equal to  
10-9.  The QCM-4 model can be expressed in the vector form of Equation (2-1) where  
[x1, x2, x3, x4] = [M, M *, A, D], f = [ f1, f2, f3, f4]

T, and 
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(3-5)
 

(3-6)
 

(3-7)
 

(3-8)
 
The ODEs model bacterial kinetics that would occur in an experiment (Reference [a]) in which a 
food product is inoculated with an initial concentration of bacterial cells I, and M(0;) = I.  After 
a period of time, the bacterial cells become activated (M  M*) and undergo a multiplication 
step through reproduction by cell division that can produce an antagonistic metabolite 
(M*  2M *+A).  Over time, death will occur either naturally (M*  D), or through sensitization 
by the antagonistic metabolite (M*+A  M**  D) where M** is an intermediate phase.  The 
initial conditions for the model are x(0;) = [I, 0, 0, 0]T. 
 
Enumeration methods such as plate counting measure the number of living cells in a sample at 
time t, U(t;), which is given by the model as 
 

     κκκ ;;; * tMtMtU  . (3-9)
 
For a given value of , the ODEs in Equations (3-1) through (3-4) can be solved numerically to 
give the value of the state x over time.  As an example, Figure 3-1 plots the values of the state 
variables as well as the value of U versus time for the case where  = [0.1, 5.0, 10.0, 2.0]T. 
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Figure 3-1.   QCM-4 Model State Variables vs. Time for  = [0.1, 5.0, 10.0, 2.0]T 
 
 
3.2 ALTERNATE QCM-4 MODEL FORMULATIONS 
 
The QCM-4 model in Section 3.1 is a mathematical model defined by four ODEs in four state 
variables with four model parameters.  We examine four alternate formulations of the model in 
applying UQ methods to the QCM-4 model.  The alternate formulations are, in certain cases, 
numerically more stable and less sensitive to uncertainties in model parameters.  The formulation 
of the QCM-4 model in Section 3.1 will be referred to as Formulation A.  Formulations B, C, D, 
and E of the QCM-4 model are described in this section. 
 
 
3.2.1 Model Formulation B 
 
Equation (3-1) can be solved analytically for M by integration which gives 
 

  tkIetM 1; κ , (3-10)
 
and Equation (3-9) can be written as 
 

   κκ ;; *1 tMIetU tk   . (3-11)
 
The concentration of dead bacterial cells, D, is uncoupled from Equations (3-2) and (3-3).  Since 
D is not measured, Equation (3-4) is not necessary to evaluate U or solve for .  Formulation B 
of the QCM-4 can then be defined by Equation (2-1) for the state x = [M*,A]T with initial 
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condition x(0) = [0, 0]T, rate parameters  = [k1, k2, k3, k4]
T, and ODE functions f = [  f1, f2]

T 
where 
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3.2.2 Model Formulation C 
 
In Equation (3-2), the term (k2 – k4)M* results in correlation between the rate parameters k2 and 
k4.  The difference between k2 and k4 is defined as the net natural growth rate in Reference [a].  
Define  to be k2 – k4.  Formulation C of the QCM-4 model is based on Formulation B and uses 
the same state vector and value for f2.  Formulation C differs from Formulation B in that the rate 
parameters are now  = [k1, k2, k3, ]T and f1 is given by 
 

AMhkMIef tk *
3

*
1

1    (3-14)
 
The change from Formulation B to C has no effect on numerically solving the system of two 
ODEs, but can affect the optimization problem.  For Formulations A and B,  is a vector of non-
negative values.  In Formulation C, the value of  can take on any real value which changes the 
solution space that numerical solvers optimize over.   
 
 
3.2.3 Model Formulation D 
 
As will be discussed in Section 3.5, the forward uncertainty propagation method randomly draws 
values for  from a multivariate normal distribution given by Equation (2-11).  When the 
covariance of the rate parameters is large relative to the mean value, negative rate parameters can 
be drawn.  To avoid this problem, Formulation D uses a logarithm space for the rate parameters 
by letting zi = ln(ki) and setting  = [z1, z2, z3, z4]

T.  The values for zi are defined on the reals, 
which will map into the positive reals when converted back to ki.  The state for Formulation D is 
x = [M*, A]T, and the differential equations are defined by f = [ f1, f2] where 
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(3-15)

 
(3-16)

 
 
3.2.4 Model Formulation E 
 
Formulation E is a modification to Formulation D that we will use in forward uncertainty 
propagation.  In Formulation C, when  > 0, the output of the QCM-4 model shows both bacteria 
growth and death.  If   0, then bacteria death-only occurs.  During forward uncertainty 
propagation, a mean solution for  exists and whether there is bacteria growth or death is known; 
however, random draws on  using Formulation D can generate bacteria growth or death.  For 
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numerical reasons discussed in Section 3.5, bacteria death-only cases are handled using a 
different model.  For bacteria growth and death cases,  is positive and Formulation E defines 
 = [z1, z2, z3, z4]

T = [ln(k1), ln(k2), ln(k3), ln(),]T.  The state for Formulation E is the same as 
Formulation D, and the two functions that define the differential equations are given by 
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3.3 INVERSE PROBLEM:  A FREQUENTIST SOLUTION 
 
3.3.1 Inverse Problem for QCM-4 Model 
 
The frequentist approach for solving the inverse problem is to solve Equation (2-5) using QCM-4 
Formulation A, B, or C.  To solve Equation (2-5), the value of g(t;) must be identified.  
Enumeration values from bacterial growth experiments are typically reported as the base 10 
logarithm of the bacterial concentration.  The observation process g(t;) discussed in Section 
2.1.1 can then be defined as 
 

    κκ ;log; 10 tUt g . (3-19)
 
The value of g(t;), a component in the objective function of Equation (2-5), is a nonlinear 
function of .  Given a set of measured data, a nonlinear solver is used to find an estimate of 
which minimizes the SSR in Equation (2-5). 
 
 
3.3.2 QCM-4 Model Sensitivity Analysis 
 
Section 2.1.2 discussed how sensitivity analysis can be applied to the solution κ̂  of an inverse 
problem.  In this section we apply the sensitivity analysis to Formulation C of the QCM-4 model.  
Application of the sensitivity analysis to other formulations is similar. 
 

Let x = [x1, x2]
T = [M*, A]T and  T

321 ˆ,ˆ,ˆ,ˆˆ  kkkκ .  The traditional sensitivity functions, s, are 

defined by Equation (2-8), the number of state variables (Nx) is two, and the number of rate 
parameters (N) is 4.  The sensitivity functions s are given by 
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With f = [ f1, f2]

T defined by Equations (3-14) and (3-13), s is the solution to Equation (2-9) 
where 
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Using Equations (3-21) and (3-22) in Equation (2-9), s is then the solution to the following 
system of eight ODEs 
 

 

 

 

  ,ˆˆ
d

d

,ˆˆ
d

d

,ˆˆ
d

d

,ˆˆˆ
d

d

124131423
14

2123131323
13

22131223
12

ˆ

1

ˆ

21131123
11 11

xsxkhsxkh
t

s

xhxsxkhsxkh
t

s

sxkhsxkh
t

s

tIekIesxkhsxkh
t

s tktk







 

 

(3-23)

(3-24)

(3-25)

(3-26)
 

 

 

 

  .ˆˆˆ
d

d

and,ˆˆˆ
d

d

,ˆˆˆ
d

d

,ˆˆˆ
d

d

241314232
24

21231313232
23

1221312232
22

211311232
21

sxkhsxkhk
t

s

xhxsxkhsxkhk
t

s

xsxkhsxkhk
t

s

sxkhsxkhk
t

s









 

(3-27)

(3-28)

(3-29)

(3-30)
 
To find the sensitivity of  κ̂;tg , the sensitivity of  κ̂;tU  as defined in Equation (3-11) must 

first be calculated.  The sensitivity of the total microbial population relative to rate parameter j 
is 
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where 1j is the Kronecker delta function.  The sensitivity of  κ̂;tg  can be found by 
differentiating Equation (3-19) and applying Equation (3-31) to get 
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The sensitivity matrix  κF ˆ  and covariance Σ̂  can then be calculated from Equation (3-32) using 
Equations (2-10) and (2-14). 
 
 
3.3.3 Alternate Models for Use in Sensitivity Analysis 
 
Section 2.1.3 discussed problems that can occur in a model of a dynamic process in terms of the 
sensitivity of the model parameters.  The QCM-4 models a wide range of bacteria growth 
kinetics that cover lag, growth, and death phases.  Issues with solution sensitivity in the QCM-4 
model can occur when data only show growth or death.  For instance, a bacteria death-only case 
can show death that is linear relative to the logarithm of the bacterial concentration.  In which 
case only one parameter is needed. 
 
Section 2.1.3 discussed using model reduction via parameter ranking.  Another approach for 
sensitivity analysis is to replace the QCM-4 model with a simpler model.  In this section we 
describe four alternate models that can be used to model simple growth kinetics.  Results of 
applying these simple growth kinetic models and comparing them with results from the QCM-4 
model are discussed in Section 4. 
 
Let x(t) be the total concentration of cells alive at time t. Assuming that the cells grow or die at a 
rate proportional to the total concentration at time t gives 
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(3-33)

(3-34)

 
where a is the growth rate, and I is the initial bacterial concentration.  Equations (3-33) and 
(3-34) can be solved to give 
 

  atIetx q; , (3-35)
 
where q = [a].  Equation (3-35) is a one parameter model of exponential growth (a > 0) or death 
(a < 0), and is referred to as the 1-stage exponential (1EX) model. 
 
To add a lag phase to the 1-stage exponential model, let x = [x1, x2], and define 
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(3-36)

(3-37)

(3-38)
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where k1 is the lag rate. The total bacterial concentration is x(t) = x1(t)+x2(t), and can be solved 
explicitly from Equations (3-36) through (3-38) as 
 

   tkattk ee
ka

Ik
Ietx 11
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q , (3-39)

 
where q = [a, k1].  Equation (3-39) is a two parameter model of exponential growth or death with 
a lag phase, and is referred to as the 1-stage exponential with lag (1EL) model. 
 
The 1EX and 1EL models can only be used to model constant growth or constant death kinetics.  
To model kinetics that exhibit both growth and death, two stage models must be used.  Let x(t) 
be the total concentration of cells alive at time t.  Assuming that over the interval 0  t  , the 
cells grow at a rate proportional to the total concentration at time t gives 
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(3-40)
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where a > 0 is the growth rate, and I is the initial bacterial concentration.  Suppose that at time 
t =  the bacterial cells enter the death phase. Assuming that during the death phase the cells die 
at a rate proportional to the total concentration at time t gives 
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(3-42)

(3-43)

 
where b > 0 is the death rate, and the initial condition at t =  is chosen so that the cell 
concentration is continuous.  Solving Equations (3-40) through (3-43) gives the piecewise 
defined model 
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where q = [a, b, ]T.  Equation (3-44) is a three parameter model of exponential growth and 
death, and is referred to as the 2-stage exponential (2EX) model. 
 
To add a lag phase to the 2-stage exponential model, let x = [x1, x2], and define 
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(3-45)
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(3-47)

 
where k1 is the lag rate.  Imposing the requirement that the solution be continuous at t = , the 
total bacteria concentration is x(t) = x1(t)+x2(t), and can be solved explicitly from Equations 
(3-45) through (3-47) as the piecewise model 
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where q = [k1, a, b, ]T, and x is defined as 
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Equation (3-49) is a four parameter model of exponential growth and death, and is referred to as 
the 2-stage exponential with lag (2EL) model. 
 
Figure 3-2 shows plots of the four alternate models discussed in this section for the example 
parameter values of a = 1.0, b = 0.7,  = 8.0, k1 = 0.5, and the initial conditions I = 105 CFU/mL. 
 
As with the QCM-4 model, Equation (2-5) can be solved to estimate the model parameters for 
the four models described in this section. The sensitivity analysis of Section 2.1.2 can be applied 
to calculate the standard error in the model for a given solution.  One method for comparing the 
models developed in this section with the QCM-4 model is to compare the standard errors which 
are a measure of the local sensitivity of a model.   
 
A second method for comparing competing models is based on information theory.  The Akaike 
Information Criteria (AIC) is a model selection criteria which allows for the comparison between 
models without the necessary condition that the models are nested.  The AIC is based on the 
Kullback-Leibler information and maximum likelihood estimation as a way to balance model 
bias and variance (Reference [c]). The AIC is given by 
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Figure 3-2.  Example Plot of Four State vs. Time for Alternate Bacteria Kinetic Models 
 
 
where n is the number of observations, J is the sum of squared residuals between the 
observations and the model output, and N is the number of estimated model parameters.  If the 
number of observations is few relative to 2

N , then a correction to Equation (3-50) is needed to 
account for finite sample sizes, and the resulting value, AICc, is given by 
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212
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Nn

NN
c . (3-51)

 
For a given set of observations, among the competing models, the best approximating model is 
the one with the minimum value for AICc. 
 
 
3.4 INVERSE PROBLEM:  A BAYESIAN SOLUTION 
 
The Bayesian approach for solving the inverse problem was applied using Formulation A of the 
QCM-4 model.  As with the frequentist approach,  = [k1, k2, k3, k4]

T and the value of g(t;) is 
given by Equation (3-19). 
 
3.4.1 Variational Bayesian Inference 
 
As discussed in Section 2.2.1, the variational Bayesian inference method estimates the model 
parameters based on approximating the parameters’ posterior distribution by a probability 
measure chosen from a parametric family, and minimizing their Kullback-Leibler divergence.  
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For the QCM-4 model, the parametric family we choose is a family of Gaussian mixtures with L 
components.   
 
Finding the posterior distribution that minimizes the KL divergence depends on the choice of the 
prior p() (Equation (2-23)).  The prior must be wide enough so that the mean of the posterior 
can be detected within the support of the prior with a relatively high probability.  We assume that 
all model parameters are independent, which allow the prior to be factored as 
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
ppp

1
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The estimate of the model parameters are the means of the posterior distributions found through 
the minimization given in Equation (2-26), or equivalently 
 

  pqKLminargq
1q Q

  , (3-53)

 
for L = 1.  The reasoning behind trying families of Gaussians on the QCM-4 model for L > 1 is 
based on the fact that QL  QL+1 for L  1.  It follows then that 
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, (3-54)

 
which indicates that the solution found in QL+1 could be preferable over the one found in QL 
since it can result in a smaller value for the KL divergence. 
 
 
3.4.2 Comparing Model Solutions 
 
Section 3.3.3 presented a method for comparing the results from different models based on the 
AIC.  For Bayesian methods, a similar method exists called the Bayesian Information Criterion 
(BIC).  The BIC is defined as (Reference [w]) 
 

    nN ln|plnBIC 2
1


  κy , (3-55)

 
where p(y|*) is the log-likelihood evaluated at the maximum a posteriori (MAP) estimate *, N 
is the number of estimated parameters, and n is the number of observations.  The value for * 
will be the mean of the variational posterior q() which is Gaussian, and is, therefore, the MAP 
estimate under the assumption that q is the true posterior.  As with the AIC, the BIC is only 
known to be valid when n >> N.  For small sample sizes, the value of F [q] from Equation 
(2-28) can be used as a second criterion for model comparison.  This is motivated by the fact that 
the BIC was essentially proposed as a criterion that serves as an estimate of the evidence p(y). 
Recall that in the optimization problem, F [q] is a lower bound of the evidence so it can give an 
additional idea about the true value of the evidence.  In general, larger values of BIC tend to 
suggest a preferable model and the sharper the increase in its value, the stronger the evidence 
that the model with the largest value is closest to the truth.  
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3.4.3 The Stochastic Differential Equation and Data Assimilation Problem 
 
Equation (2-43) is an Itô stochastic differential equation that can be applied to the QCM-4 

model.  Using Formulation A, let  T4
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and 
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Since the total number of viable bacterial cells at any time is given by Equation (3-9), let the 
observation operator in Equation (2-45) be defined as 
 

  21
ttt XXh X . (3-58)

 
 
3.5 FORWARD UNCERTAINTY PROPAGATION 
 
Most of the development discussed up to this point has focused on estimating the model 
parameters that best fit the QCM-4 model to a set of measured data.  Both the Frequentist and 
Bayesian approaches give methods for specifying confidence intervals about each model 
parameter, but these methods assume that the parameters are independent.  In this section, a 
method for forward uncertainty propagation is developed that accounts for the variability and 
covariance structure of the estimated model parameters due to variability in the observations and 
the model sensitivity. 
 
Let yi = y(ti) for i = 1,...,n be a set of measured data and κ̂  be an estimate of the N model 
parameters for a bacteria kinetics model.  Each yi is the base 10 logarithm of a bacterial count, 
and the bacterial kinetics model can be either one of the formulations of the QCM, or one of the 
alternate models described in Section 3.3.3.  The method for forward uncertainty propagation 
consists of the following three steps: 
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1. Estimate the covariance in κ̂ , 

2. Generate a set of random model parameters, j, from a multivariate normal distribution, 
and 

3. Generate and plot the set of random kinetics curves corresponding to the random model 
parameters j. 

 

Section 2.1.2 discusses how the covariance for the estimate κ̂  , Σ̂ , can be calculated.  The 
method for generating random model parameters and bacteria growth curves are discussed in the 
following sections. 
 
 
3.5.1 Generating Random Model Parameters 
 
To generate a set of random model parameters, we assume that the model parameters  are 

random variates from a multivariate normal distribution with mean κ̂  and covariance Σ̂ .  To 

generate the random variates, let A be a decomposition of Σ̂  such at ATA = Σ̂ .  If z is a vector 
of N independent standard normal variates, then  is given by (Reference [x]) 
 

zAκκ  ˆ . (3-59)
 

The matrix A is found using a Cholesky decomposition of Σ̂ , which requires Σ̂  to be positive 
semi-definite.  The only cases in which the covariance matrix was found to not be positive semi-
definite were those that exhibited death-only (i.e. inactivation) kinetics.  These cases are 
discussed in the next section. 
 
A second issue that occurs in the generation of random model parameters occurs when the 
standard error of the model parameters (i.e. the square root of the diagonal of the covariance 
matrix) are large with respect to the mean value of the model parameters.  For Formulations A 
and B of the QCM, the model parameters are the four rate parameters [k1, k2, k3, k4].  For 
Formulation C, the fourth parameter is  = k2 – k4.  The rate constants are inverse times, and 
must have non-negative values.  As will be discussed in Section 4, almost every dataset resulted 
in large numbers of negative rate parameters to be generated.  To prevent this problem from 
biasing results, Formulations D and E were developed for use in forward uncertainty 
propagation. 
 
 
3.5.2 Generating Random Kinetics Curves 
 
Our current implementation of the forward uncertainty propagation algorithm (see Appendix B) 
generates 2500 random estimates of the model parameters.  With the exception of death-only 
cases, kinetics curves for each random estimate of the model parameters are drawn from time 
zero up to a maximum time using Formulation E of the QCM model. 
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Several of the death-only cases resulted in covariance matrices that were not positive semi-
definite, and, therefore, could not be decomposed.  To be consistent, any dataset that results in a 
mean model parameter estimate in which k4 is larger than k2 (i.e. death-only) undergoes a 
parameter reduction to the 1-stage exponential model with lag given by Equation (3-39).  The 
two model parameters a and k1 are found by minimizing the sum of squared residuals (SSR) 
between the measured and modeled data. 
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4.0 UNCERTAINTY QUANTIFICATION APPLIED TO THE QCM-4 
MODEL 

 
In this section we present the results of applying the UQ methods discussed in Section 3 to the 
QCM-4 model using data collected from bacteria growth experiments on food.   
 
Finding the best fit of the QCM-4 model to a set of measured data consists of two steps: (1) 
solving the system of ODEs given a set of rate parameters and an initial bacteria count and (2) 
minimizing the SSR between the QCM-4 model fit and a set of measured data.  
 
4.1 SOLVING THE SYSTEM OF ODEs 
 
Given a set of rate parameters  = [k1, k2, k3, k4]

T and initial conditions for the state  
x(0;) = [I, 0, 0, 0]T, the value of the state at any time t, x(t;), is found by solving a system of 
two or four differential equations as discussed in Sections 3.1 and 3.2.  The system of differential 
equations for the QCM-4 model are nonlinear, and, in general, cannot be solved analytically; 
numerical solvers are used. 
 
Computer code to implement the Frequentist approach was written using MATLAB, and the 
ODE solver used was either ode45 for non-stiff systems of ODEs, or ode15s for stiff systems 
of ODEs.  A system of ODEs is considered stiff when the step size needed for numerical stability 
must be very small, and can depend on the formulation of the QCM-4 being used and/or the set 
of rate parameters that define the system of ODEs.  MATLAB’s ode45 solver is based on an 
explicit Runge-Kutta (4,5) formula called the Dormand-Prince method.  The ode15s solver is a 
variable order, multistep solver based on the numerical differentiation formulas (NDFs). 
 
For the Bayesian approach, computer code was written in Python, and used the ODE solver ode 
from the scipy package with the LSODA algorithm.  LSODA (Livermore solver for ordinary 
differential equations with automatic switching) is part of the ODEPACK library of ODE solvers 
developed at Lawrence Livermore National Laboratory.  LSODA automatically switches 
between the Adams method for non-stiff systems of ODEs, and backward differentiation 
formulas (BDF) for stiff systems of ODEs. 
 
As part of our analysis of the QCM-4 model, 300 solutions were calculated for different sets of 
rate parameters to determine the types of bacteria growth and death that are modeled by the 
QCM-4 model.  Figure 4-1 presents 16 examples of the solutions showing no growth or death; 
death only; growth only; growth and stationary and growth and death.  Analysis of the solutions 
showed that different combinations of rate parameters can produce similar or identical growth 
curves.  As an example, consider the case in which k1 is zero (Figure 4-1A).  Equation (3-1) 
shows that if k1 is zero, then the change in lag phase bacteria cells is zero which means that the 
number of bacteria cells remains constant for all time, regardless of the values for the rate 
parameters k2, k3, and k4.  This implies that some types of growth kinetics may be 
overparameterized by the QCM-4 model.  As will be seen in Section 4.3, different combinations 
of rate parameters can produce growth curves where the values of the resulting SSRs are the 
same. 
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Figure 4-1.  Example QCM-4 Growth Curves (Page 1 of 2) 
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Figure 4-1.  Example QCM-4 Growth Curves (Page 2 of 2) 
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Relationships between the rate parameters, k1, k2, k3, k4, and the solution of the QCM-4 model 
are: 
 

 k1 determines the length of the initial lag phase, 

 If k1 is zero, the count of live bacteria cells remains constant, 

 Net growth of bacteria cells is a function of k2-k4, 

 If k3 or k4 is zero, unlimited growth can occur, 

 If k4 is zero and k3 is non-zero, growth followed by a stationary phase can occur, 

 If k2-k4 is greater than zero and k4 is non-zero, then growth and death can occur, 

 If k2-k4 is less than or equal to zero, death only can occur, and 

 The transition from growth to either stationary or death phases is a function of k3. 
 
These relationships provide a guide for comparing different growth curves, and for choosing 
initial values for the rate parameters for use in the optimization when measured data are used.  
Figure 4-2 shows an example of QCM-4 model solution for a case exhibiting growth and death. 
Different sections of the curve are annotated with the rate parameter(s) that have the most 
influence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2.  Regions of Influence of Rate Parameters on Growth Curve 
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4.2 MINIMIZING SSR 
 
Given a set of bacteria count data, the inverse problem is to find the rate parameters that generate 
QCM-4 model output that best fits the data.  Both the Frequentist approach and Bayesian 
variational approach solve the inverse problem by minimizing the SSR.  The Frequentist 
approach finds the rate parameters that minimize the SSR between the measured data and the 
model output (Equation (2-5)).  The computer code is written in MATLAB and uses the 
MATLAB Central function minimize, or the Optimization Toolbox function fmincon.  The 
function minimize uses the Nelder-Mead minimization algorithm and allows for bounds and 
constraints to be specified.  The function fmincon is run using the interior-point algorithm and 
also allows for specifying bounds and constraints. 
 
The Bayesian variational approach uses a posterior probability distribution and a family of 
Gaussian probability distributions that are functions of the rate parameters and measured data.  
The solution rate parameters are those that minimize the Kullback-Leibler divergence between 
the estimated true posterior probability distributions and the possible families of Gaussian 
distributions.  The computer code is written in Python and uses the minimize solver from the 
scipy package.  The minimize solver is implemented using the L-BFGS-B (Limited-memory 
Broyden-Fletcher-Goldfarb-Shanno with box constraints) algorithm developed at Northwestern 
University. 
 
The minimization algorithms used for solving the inverse problem require an initial set of rate 
parameters.  For the Frequentist approach, the initial rate parameters were determined by 
examining the measured data, comparing it with the set of pre-calculated solutions discussed in 
Section 4.1.1 or previous solutions.  If necessary, initial rate parameters are adjusted to reduce 
stiffness.  For the Bayesian approach where the mean and variance of the logarithm of the rate 
parameters are to be determined, the initial parameters were assumed to be from a normal 
distribution.  In both approaches, global optimization techniques were not used.  Section 6 
discusses the use of multistart methods and machine learning algorithms for global optimization. 
 
 
4.3 DATASETS 
 
Reference [b], which describes the quasi-chemical model for predicting bacteria growth in foods, 
contains plots of datasets collected from ten experiments.  Figures 1 – 10 of Reference [b] show 
measured data consisting of two to six datasets of measured plate counts over time of the growth 
of bacteria in food-based hosts under different environmental conditions. 
 
Specifically, the datasets present the growth of Staphylococcus Aureus (S. aureus); Listeria 
Monocytogenes (Listeria); or Escherichia coli (E. Coli) on hosts of bread, turkey meat, ham, 
commercial cheese products, or whey protein at different values of pH, temperature (T), water 
activity (Aw), and pressure (P).  In Figure 8 of Reference [b], different concentrations of anti-
microbial lactate are added to the samples.  In total, there are 39 datasets of bacteria counts as a 
function of time for the 10 food experiments. 
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The datasets were digitized from Reference [b] and recorded in 39 ASCII text files for use in 
developing the UQ code for the QCM-4 model.  Appendix A contains a description of the 39 
datasets; plots of the datasets for each of the ten experiments along with the QCM-4 fits; and 
forward uncertainty propagation plots for each dataset and a table of the dataset time series 
values. 
 
A summary description of the datasets shown in Figures 1 – 10 of Reference [b] follows: 
 
Figure 1 contains four datasets of growth data spanning 20 days for S. aureus in bread at a pH of 
5.4, T of 35C, and four values of Aw. 
 
Figure 2 contains six datasets of growth data spanning 65 days for S. aureus in bread at an Aw of 
0.90, pH of 5.23, and six temperatures between 15C and 40C. 
 
Figure 3 contains five datasets of growth data spanning 12 days for S. aureus in bread at an Aw 
of 0.86, T of 35C, and five pH values between 4.97 and 5.38. 
 
Figure 4 contains four datasets of growth data spanning 19 days for S. aureus in turkey meat at a 
pH of 6.35, T of 35C, and four values of Aw between 0.84 and 0.89. 
 
Figure 5 contains three datasets of growth data spanning 20 days for S. aureus in ham at a pH of 
5.8, T of 35C, and three values of Aw between 0.88 and 0.92. 
 
Figure 6 contains two datasets of growth data spanning 8 days for S. aureus in commercial 
cheese products at a T of 35C and two values for Aw/pH of 0.85/5.9 and 0.87/6.0. 
 
Figure 7 contains three datasets of growth data spanning 16 days in turkey meat for S. aureus, 
Listeria, and E. coli at a pH of 6.4 and T of 35C. 
 
Figure 8 contains four datasets of growth data spanning 13 days for S. aureus in turkey meat in 
which anti-microbial lactate has been introduced. The growth data is for an Aw of 0.896, T of 
35C, pH of 6.4, and four concentrations of lactate between 0% and 3%. 
 
Figure 9 contains five datasets of growth data spanning 50 minutes for E. coli in whey protein 
under high pressure. The growth data are at a T of 50C and at five pressures between 207 and 
345 MPa. 
 
Figure 10 contains three datasets of growth data spanning 45 minutes for E. coli in whey protein 
at a P of 310 MPa, and at three temperatures between 30C and 50C. 
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4.4 FREQUENTIST AND BAYESIAN SOLUTION COMPARISON 
 
Solutions to the inverse problem for the 10 datasets from Figure 1 and 2 of Reference [b] were 
calculated using the Frequentist and Bayesian approaches.  Figures 4-3 through 4-12 show plots 
of the Frequentist and Bayesian solutions; the measured data; and a table with the mean rate 
parameters, the standard error (Frequentist) or standard deviation (Bayesian) of the estimated 
rate parameter, and the SSR of the solution relative to the measured data. 
 
The Frequentist solutions used Formulation B or C, and estimate the mean value of the rate 
parameters using Equation (2-5).  The standard error, a calculated quantity of the solution, is the 
square root of the diagonal of the covariance matrix. 
 
The Bayesian solutions used a version of Formulation D that extends the list of parameters being 
solved for to include a variable related to the standard deviation of the rate parameters.  The 
mean value of the rate parameters and standard deviation of the rate parameters are estimated 
using the variational method discussed in Section 3.4 for a single family of Gaussian 
distributions. 
 
A comparison of the Frequentist and Bayesian solutions in Figures 4-3 through 4-12 shows that 
 

 The Frequentist solution has the smallest SSR value in 6 of the 10 datasets, 

 The Bayesian solution has the smallest SSR value in 3 of the 10 datasets, 

 In one dataset, the SSR of the solution is the same for both approaches to three significant 
digits, 

 The median percentage difference relative to the mean in the SSRs over all 10 datasets is 
8.3%, 

 The mean solution rate parameters of the two approaches agree to less than 6% in only 2 
datasets, 

 The standard errors of the rate parameters for the Frequentist solutions vary from 0.05 to 
6.98  105, and 

 With the exception of the standard deviation for k3 in Figure 4-7 ( = 7.18), the standard 
deviations of the rate parameters for the Bayesian solutions vary from 1.00 to 1.89. 

 
For all 10 datasets, the growth curves for the Frequentist and Bayesian solutions are similar, and 
often nearly identical even though the solution rate parameters seldom agree.  For example, in 
Figure 4-4, the generated curves are nearly identical and the resulting SSE values are the same.  

The Frequentist solution rate parameters (  T25.97,06.77,66.97,37.0Fκ ), though, differ from 

the Bayesian solution rate parameters (  T74.40,31.184,15.41,37.0Bκ ) by more than 80% for 
k2, k3, and k4.  This shows that growth curves generated from the QCM-4 model may not be 
unique over the rate parameters, and the model may be overparameterized for some types of 
growth kinetics. 
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Figure 4-3. Comparison of Frequentist and Bayesian QCM-4 Model Fits for Reference 

[b], Figure 1, Dataset 1 
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Figure 4-4. Comparison of Frequentist and Bayesian QCM-4 Model Fits for Reference 

[b], Figure 1, Dataset 2 
 
  




























































































































































































































































































































































































































































































































































